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Reflections from the boundary of a model may be completely eliminated by adding 
together the solutions of the Dirichlet and Neumann problems. The formulation is 
applicable to the solution of the scalar and vector wave equations, to dilatational elastic 
waves where mode conversion can occur, and to surface waves. When there is more than 
one component of displacement, the Dirichlet and Neumann conditions are applied to 
alternate components at the boundary. The technique is easily implemented for ‘Yinite 
element*’ or -&finite difference” calculations. 

1. INTR~IxJCTI~N 

In numerical modelling of wave propagation problems the presence of artificial 
boundaries introduces spurious reflections which contaminate the solution. It is 
highly desirable to be able to eliminate these reflections and thus simulate an 
infinite medium. The problem can be overcome by constructing a model of sufficient 
size that the required solution is obtained before the reflections arrive. But this is 
not always feasible, as the model size is limited by the available computer storage. 
The experimenter must often make do with a smaller model and endeavor to ensure 
that his results are not affected by its small size. Lysmer and Kuhlemeyer [1] have 
formulated a system of dashpots at the boundary which damp out most of the 
reflections. The damping, though frequency dependent, is almost total for a wide 
range of incidence angles. Ang and Newmark [2] have used properties of the trans- 
mission of D’Alembert forces to develop a nonreflecting boundary. Their formula- 
tion gives a good approximation to the total elimination of reflections in most cases, 
but it is still only an approximation. Its ultimate justification is numerical. Approxi- 
mate extrapolation schemes are commonly used in hydrodynamic problems 
([6] and references therein). 

In the following a technique for completely eliminating the reflections is 
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presented. The analytical formulation is exact, independem of both frequency and 
incidence angle. It involves the superposition of soiutions and is thus much more 
costly than a single solution, but it allows solutions uncontaminated by refleckms 
to be obtained when computer facilities prohibit the construction of a very Large 
model. 

(a) The Sedar Wave Epatim 

This case is almost trivial. The equation of motion is 

&@p E &7& ( i) 

where u is the displacement and c the velocity. For a boundary at x = 0 (~22 Fig. 2) 
and incidence at angle i an incident plane wave of angular frequency ~0 and s~nit 
amplitude may be expressed as 

The plane of Fig. 1 is that of the incident and reflected W.ZV~S? aud the normal. The 
coordinate system may be chosen appropriately. The reflected wave will then be of 
the form 

FIG. 1. The reflection scheme discussed in the text. The incident energy impinges a~ as! angle i 
on the boundary (x = O), and is reflected. The reflection denoted by the broken Ike is the SY 
wave which occurs when a p wave encounters a free boundary. 

For a free boundary at x = 0, the Neumann condition &~/8x = 5 gives A = ;. For 
a fixed .boundary, the Dirichlet condition u = 0 gives .A = - 1. Addition of the 
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two solutions entirely eliminates the reflection. The same relationship holds if 
propagation is damped, since the imaginary exponents are replaced by complex 
ones, and the mathematics is otherwise unchanged. For curved wavefronts, one 
may take an image source which gives rise to the reflected wave. The Neumann 
condition requires the opposite sign, Addition eliminates the reflection. 

(b) DiIatational Elastic Waves and the Vector Wave Equation 

Consider first dilatational elastic waves. The vector wave equation is a special 
case. The equation OF motion is 

p(Pll/W) = (A + p) y-7 * u) + pml, (4) 

where p is the density, p the rigidity, and A the first Lam& parameter. The two 
solutions which will be added are the following: 

BOLJNDARY VALIJE PROBLEM 1. The x displacement and the tangential stress are 
set to zero on the boundary. That is, 

Using (5), (6) becomes 

aug/ax = 0 at .X = 0 (Neumann for zfY). (7) 

BOUNDAKY VALUE PROBLEM 2. The y displacement and the normal stress are 
set to zero on the boundary. 

i.e. 

hence 

Zly = 0 (Dirichlet for z[J, 

pzz = (A +- 2/L)@&/&) + A(~U~&) = 0, 

&@x = 0 at x = 0 (Neumann for uJ. 

Displacements may be expressed in terms of two potentials 

ux = (&p/ax) - (a/&), (11) 

l$/ = @spy) + @#/W. WI 

The potential function q~ describes longitudinal (P) motion, and $ describes 
transverse (S) motion. The usual seismological terminology SF’ and SH will be 
adopted, to refer to 5 particle motion in the plane containing the propagation 



A NONREFLECTING PLANE BOUNDARY 849 =i 

direction and the normal, and perpendicular to this plane? respectively. Section 2<a.) 
above is applicable to SH motion. 

The potentials for P incidence are 

yz = exp (~IJ/CX)(X cos i + y sin i - I&) 

+ A exp (LJ/u)(-x cos i + y 5in i - 0Y) 

#J = B exp (k0//3)(- x cosj j- y sinj -- ,3) 

(Incident P} 

(reflected P)$ 

(reflected S V) 

where cx = I’ velocity, /3 = S velocity, i = incidence angie, and j = SV refiection 
angle. Figttre 1 shows the relevant geometry for incident P energy- 

Sohtio~2 1 

From (5) and (11) 

From (7) and (12) 

SQ 

0 = (a%ppx 8y) + (qJ/c?xy 
.- -- (co2 cos i sin i/G)(l - A) exp(ia/a)(y sm i - zr) 

- (~2 cos2j//F) B exp(k0/p)(y sinj - @); 

(cos i sin i/c?)(l - A) = -(cos2j/~) B. 

From (17) and (19), ,4 = I and I3 = 0. This corresponds to a P reflection in phase 
with the mcident wave, and no SV reflection. 

uu = 0 gives (sin i/=)(1 + A) == (cos j/p) B, (20) 

t3zi.J~~ = 0 gives (cos2 i/a2)(l +- A) = - (cosj sin j//P&. (Zjj 

So A = - 1 and B = 0. This implies a P reflection out of phase with the incident 
wave, and no SV reflection. 

Therefore addition of the two solutions will exactly cancel the reflections ‘The 
case of incident SV waves is exactly parallel. It is a simple matter to show that there 
is no reflected P wave in either solution? and that the two reflected SV waves are cf 
opposite sign. Addition eliminates all reflections. As for the scalar wave equatf.on, 
the presence of a damping term does not affect the formulation. 
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In both the solutions, mode conversion is suppressed, so in fact the reflections 
are those for the vector wave equation. The same formulation therefore solves 
both the elastic case and the vector wave equation, such as would be applicable to 
acoustic waves in fluids, for example, or to electromagnetic wave propagation. 

The two solutions can also be formulated in terms of image sources. P and SV 
reflections at a free boundary cannot be treated by image techniques, because of the 
mode conversion problem. The requirement that one displacement be zero, 
however, suppresses the conversion and allows the use of images. The image 
sources are of opposite sign in the two solutions, and they therefore disappear on 
addition. 

(c) Bod>T Waves in Three Dimensions 

Since the SH component is uncoupled from the P and SV, it is still only necessary 
to form two solutions for each face. They are as follows. 

BOUNDARY VALUE PROBLEM I. Set the normal displacement on the boundary 
to zero. 

BOUNDARY VALUE PROBLEM 2. Set the two displacements in the plane of 
the boundary to zero. The superposition of the two solutions will cancel all 
reflections. 

(d) Surface Waves 

It is perhaps not obvious that reflections of surface waves are also eliminated by 
this formulation. If Fig. I is now interpreted as a plan view of a three-dimensional 
model, showing the free surface, it can be used to illustrate the surface wave case. 
The wave encounters the boundary at an angle of incidence i, and is reflected. 

(i) Love waves. Particle motion is horizontal, and transverse to the direction of 
propagation. At any particular depth, therefore, the elastic conditions to be satisfied 
at a boundary are exactly those for SV reflection in two dimension, i.e., transverse 
particle motion in the plane of the incident wave and the normal. As was indicated 
in (b), the addition of the two solutions cancels the reflection. 

(ii) RayZeigh waves. Particle motion is in the vertical plane containing the propa- 
gation direction. At a free boundary there will be a reflected Rayleigh wave, 
together with body waves whose generation is necessary to satisfy the stress 
conditions at the boundary. It is beyond the scope of this paper to examine Rayleigh 
wave reflections in detail. Rather, it will suffice to show that if only the reflected 
Rayleigh wave is considered, reflections of opposite sign correspond to the Dirichlet 
conditions for normal and parallel displacements, respectively. 



Potentials can be written as 

The functions j-(z) and g(z), the phase velocity c, and the ratio B,iA are gkez by 
the conditions that y and $J satisfy the wave equat.ion with velocities CX(Z) and p<:), 
respectively, and also that the stresses on the free surface are zero (see, e.g. [3:?~. The 
components of displacement at the boundary are 

A positive reflection (Al = A, & = 5’) thus demands that zlT = 0, and a negakve 
reflection demands ~1~ = ~1~ = 0. It is a simple matter to show that the stress 
requirements, which degenerate to the Neumann conditions as before, are also 
satisfied* It should be emphasized that this is not a complete proof for plaue 
Rayleigh wave incidence, but it does indicate that reflections of Rayleigh waves 
might be expected to be canceled by exactly the same formulation as for body 
waves. 
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3, MULTIPLE REFLECTIONS 

When more than one face of the model is required to be nonreflecting, more 
solutions must be added to eliminate multiple reflections. Figure 2 illustrates the 
case of a corner, with incident SV energy. In Fig. 2a the displacements normal to 
the boundary have been held to zero at each face, and in Fig. 2b the displacements 
parallel to the boundary have been held to zero. The second order reflection is of 
the same sign in both cases, so two further solutions (2c and 2d) must be added in 
order to eliminate all reflections. The same group of four solutions is necessary for 
P wave incidence, and for the scalar wave equation case the four solutions are the 
combinations of the ‘Yixed” and “free” boundary conditions. In general, if reflec- 
tions are required to be eliminated on n surfaces 2’Z solutions must be added. So 
eight solutions would be necessary at a three-dimensional corner. 

FIG. 2. The four solutions necessary for P or SV incidence at a corner. The particular case 
shown is the SV wave, and the small transverse arrows indicate the polarity at each stage. “Dx” 
implies the Dirichlet condition for the x component, “NY” the Neumann condition for the JJ 
component, etc. 

In practice it may not be necessary to add all the solutions to cancel the highest 
order reflections. These arrive later, so it may be possible to obtain the required 
information before they arrive. There are, in fact, high order reflections which 
cannot be cancelled. They can occur when a ray path encounters the same face 
more than once. An example is given later. These reflections are of such high order, 
and their travel time so long, that they are of little practical importance. 
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4, GENERATION OF SURFACE WAVES AT ~OVIWARIE~ 

When a body wave whose wavefront has large curvature encounters a free 
surface? surface waves can be generated. This is undesirable when the boundary is 
to be nonreflecting. The Rayleigh wave case is covered by the fact that none of ::he 
solutions to be combined has a free boundary. One or other of the displacements 
is always held to zero, and therefore Rayleigh waves can never propagate. 

Love waves however, can be generated by SH incidence? and one of the two 
solutions to be considered is the “free boundary” sohttion No Love waves lvi2 
propagate for the second solution (“fixed boundary5’) so there wiY be some 
residual when the sum is formed. Such waves wi3 be noticeable only in the vicimty 
of the boundary, so it is not vital that they be ehminated: though it is certamly 
desirable. Their generation could be suppressed by ensuring that the model be 
homogeneous near the boundary. Love waves do not mopagate in a homogexms 
halfspace. 

5. IWMERKAL IMPLEMENTATION. A FINITE ELEMENT SCHEME IN 'Two DWIENW~N~ 

Propagation problems are conveniently treated by a dynamic ‘Yin&e element” 
scheme employing the lumped mass matrix (see, e.g. [4]). This requires the solution 
of a matrix differential equation 

where [K] is the stiffness matrix, [C] is a damping matrix, [M] is the diagonal mass 
matrix, and F is a forcing function. The vector u contams the displacements at a2 
the nodes of the mesh. A dot denotes differentiation with respect to time. 
Equation (3) is conveniently solved by a Runge-Kutta aigorithm (e.g. [5]j which 
requires that it be cast into the form 

Since [Mj is diagonal, the inverse is trivial to obtain. The irichlet condition ma.7 
be imposed by setting to zero the terms of [M]-r .that correspond to the particular 
components of the boundary displacements that are to be zero. If these displace- 
ments are set to zero initially, they are forced to remain zero throughout the entire 
solution. The stress condition is automatically satisfied by the firnte element 
formulation” 

Figure 3 shows a model which demonstrates this technique. It is simply an 
assemblage of 576 square elements, and was excited at the upper left hand corner 
by a square pulse. Four sohrtions were added to eliminate reflections on the right 
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hand and lower faces. The displacements observed at the points marked in Fig. 3 
are shown in the subsequent figures. The frequency characteristics of the model are 
determined by the size of its elements. Wave lengths shorter than the element length 
will be severely attenuated, so the square input pulse becomes considerably 
rounded. The finite element solution also contains a ringing phenomenon, at a 
frequency characterisitic of the size of the elements. For display purposes the time 
series of Figs. 4 and 5 have been low-pass filtered, and the ringing almost entirely 
removed. 

Impulse 
here 

FIG. 3. The finite element model used to illustrate the technique. All elements are the same 
size, but fine detail of the model has been onIy partly indicated. The points PI to N are those at 
which the displacements of Figs. 4 and 5 were observed. The ray path shown corresponds to one 
high order reflection which is not canceJled. The model is 1 km square, P and S velocities are 
5.5 kmjsec and 3.3 km/set, respectively, and there is no damping. 

Figure 4 illustrates a solution of the scalar wave equation. No damping or 
forcing terms (Eqs. (30), (31)) were used; the excitation was applied as a dis- 
placement pulse. The solution for free boundaries is shown in Fig. 4a, and in 
Fig. 4b can be seen the mean of the four solutions. The only reflection occurring in 
Fig. 4b, visible on traces D and I through N, corresponds to the ray path shown in 
Fig. 3, and to the corresponding path nearly parallel to the x axis. This reflection is 
not cancelled since it involves two encounters with a nonreflecting face, and so the 
reflected wave always has a positive sign. In practice this causes little difficulty, ,as 
models will in general be larger than that of Fig. 3, and this high order reflection 
will be delayed until after the required solution has been obtained. Its presence 
does imply, however, that it is not feasible to excite a model with a time series of 
very long duration. Rather, one should endeavor to obtain the impulse response, 
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and then convolve with the desired input. If the model incorporates damping3 3~ 
high order reflections may be damped out completely, and this wonId of course 
a!Iow exczitation by a long time series, without contamination from reflections. 

FIG. 4. 0bserved displacements for the scalar wave equation, i.e., SH motion in two dimen- 
signs, In Fig. 4a no effort has been made to cancel reflectmns~ Fig. 4n represents the sum of me 
four solutions necessary to eliminate reflections 
Time is in seconds. 

,,!,,,,,i,:,i, I,! >, 
0.0 0.2 04 0.6 time O.6 I.0 

an the lower and right band faces of the nxxkl. 

FIG. 5. The P-W case, showing the x and .r components of motion at each point. Fo:x sol!:- 
tions have been added, as in Fig. 2. Theoretical arrival times for P (sohd line) and S (broken ime) 
are shown and also for the reflection corresponding to the ray nath of Fig. 2 {dotted 2~). 
The large displacements following the S wave on the free surface are those of the Rayleigh 
wave. 
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Figure 5 shows the mean of the four solutions for the dilatational case. The 
square exciting pulse was applied in the negative y direction, and the x displace- 
ments along the left-hand face of the model were held to zero to prevent Rayleigh 
waves propagating down that face. The Rayleigh pulse can be seen clearly in traces 
A-D? as the large displacements following the S pulse. No reflected Rayleigh wave 
returns from D. Calculated arrival times as shown in the figure identify the P and S 
pulses and the third order reflections of Fig. 3, from the right hand and bottom 
faces of the model. The latter reflections are visible mainly on the JJ components of 
displacement, and are stronger because P wave radiation is strongest in the y 
direction. Reflections from the right-hand face are detectable on the x component. 
The arrows in the figure indicate the appropriate component where the reflection 
may be seen. There are also some subsequent reflections which cannot be 
eliminated, but an increase in the size of the model will delay their arrival. It should 
be appreciated that doubling the size of the model delays by a factor of eight the 
time of first detection of unwanted reflections. 

This finite element formulation is of course only one way of implementing the 
proposed technique. There are others, some possibly more efficient, but it serves 
to demonstrate the rather dramatic elimination of reflections. There is no difficulty 
in incorporating the scheme into Yinite difference” calculations. 

6. OBLIQUE AND CURVED BOUNDARIES 

Thus far only plane boundaries, parallel to one of the coordinate axes, have been 
treated. It would be convenient if the formulation could be extended to plane 
boundaries inclined to the axes and to curved boundaries. For inclined plane 
boundaries, it is necessary to express the displacement at the boundary in terms of 
components normal and parallel to the boundary face, rather than parallel to the 
coordinate axes. This can be accomplished for finite element formulations by a 
simple transformation matrix, and no doubt can also be implemented for finite 
difference schemes. The problem of curved boundaries presents a further difficulty, 
namely that if the boundary is concave to the incident wavefront, multiple reflec- 
tions can occur. It therefore seems advisable to use plane boundaries, unless there 
are compelling reasons to introduce curvature. 

7. CONCLUSIONS 

Reflections may be eliminated in wave propagation problems by superimposing 
solutions which satisfy the Dirichlet and Neumann boundary conditions, respec- 
tively. In cases where there is more than one component of displacement, these 



conditions are apphed to alternate components at the ‘ootindary. If ?I boumkry 
faces are required to be nonreflecting, lFz solutions will be necessary for a fu3 
solution: although it is rarely necessary to compute all these. Certain reflecticx+ 
involving mukiple encounters with the same boundary face of a model cams& be 
eliminated. but this has only limited effect since they imay be delayed by increaskg 
the size of the model: or removed completely by incorporating damping. 3x 
technique is easily implemented for finite element or finite #dSTerence schemes azd 
is applicable when particle motion is governed by the scalar or vector wave 
equation, or in the more general elastic case, including surface waves- The prew~ 
of damping terms does not alter the formulation‘ 
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