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Reflections from the boundary of a model may be completely eliminated by adding
together the solutions of the Dirichlet and Neumann problems. The formulation is
applicable to the solution of the scalar and vector wave equations, to dilatational elastic
waves where mode conversion can occur, and to surface waves. When there is more than
one component of displacement, the Dirichlet and Neumann conditions are applied to
alternate components at the boundary. The technique is easily implemented for “finite
element™ or “*finite difference” calculations.

1. INTRODUCTION

In numerical modelling of wave propagation problems the presence of artificial
boundaries introduces spurious reflections which contaminate the solution. It is
highly desirable to be able to eliminate these reflections and thus simulate an
infinite medium. The problem can be overcome by constructing a model of sufficient
size that the required solution is obtained before the reflections arrive. But this is
not always feasible, as the model size is limited by the available computer storage.
The experimenter must often make do with a smaller model and endeavor to ensure
that his results are not affected by its small size. Lysmer and Kuhlemeyer [1] have
formulated a system of dashpots at the boundary which damp out most of the
reflections. The damping, though frequency dependent, is almost total for a wide
range of incidence angles. Ang and Newmark [2] have used properties of the trans-
mission of D’Alembert forces to develop a nonreflecting boundary. Their formula-
tion gives a good approximation to the total elimination of refiections in most cases,
but it is still only an approximation. Its ultimate justification is numerical. Approxi-
mate extrapolation schemes are commonly used in hydrodynamic problems
([6] and references therein).

In the following a technique for completely eliminating the reflections is
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presented. The analytical formulation is exact, independent of both frequency and
incidence angle. It involves the superposition of solutions and is thus much more
costly than a single solution, but it allows solutions uncontaminated by reflections

to be obtained when computer facilities prohibit the construction of a very lares
model.

2. ANALYTICAL FORMULATION

(a) The Scalar Wave Equation

This case is almost trivial. The equation of motion is

Fufer? = oV, (1Y

LE)

where u is the displacement and ¢ the velocity. For a boundary at x = 0 {(see Fig. 1}
and incidence at angle { an incident plane wave of angular frequency « and unit
amplitude may be expressed as

u = exp{iof/c)(x cos i + ysini — ct). {23

The plane of Fig. 1 is that of the incident and reflected waves, and the normal. The

coordinate system may be chosen appropriately. The reflected wave will then be of
the form

i = Aexp (jw/e)(—x cos i+ ysini— cr) "y

1y -
- Boundary
at x=0

Y

X

FiG. 1. The reflection scheme discussed in the text. The incident energy impinges at ax: angle i
on the boundary (x = 0), and is reflected. The reflection denoted by the broken {ine is the 5V
wave which occurs when a P wave encounters a free boundary.

For a free boundary at x = 0, the Neumann condition &u/éx = 0 gives 4 = . For
a fixed boundary, the Dirichlet condition u# = 0 gives 4 = —1. Addition of the
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two solutions entirely eliminates the reflection. The same relationship holds if
propagation is damped, since the imaginary exponents are replaced by complex
ones, and the mathematics is otherwise unchanged. For curved wavefronts, one
may take an image source which gives rise to the reflected wave. The Neumann
condition requires the opposite sign. Addition eliminates the reflection.

(b) Dilatational Elastic Waves and the Vector Wave Equation

Consider first dilatational elastic waves. The vector wave equation is a special
case. The equation of motion is

p(ujer) = (\ + p) V(V - W) + uVu, @

where p is the density, p the rigidity, and A the first Lamé parameter. The two
solutions which will be added are the following:

BoUNDARY VALUE PrOBLEM 1. The x displacement and the tangential stress are
set to zero on the boundary. That is,

Uy = (Dirichlet for u,), (5)
Pay = pl(0ua/0y) + (0u,/0x)] = 0. ©®

Using (5), (6) becomes
ou,fox =0 at x = 0 (Neumann for u,). )

BOUNDARY VALUE PROBLEM 2. The y displacement and the normal stress are
set to zero on the boundary.

i.e. u, =0 (Dirichlet for u,), 8)
Pay = (/\ + 2:“’)(aux/ax) + A(Euy/ay) =0, €

hence
Ou,/ox =0 at x = 0 (Neumann for u,). (10)

Displacements may be expressed in terms of two potentials

uy = (89/0y) + (64/0x). (12)

The potential function ¢ describes longitudinal (P) motion, and i describes
transverse (S) motion. The usual seismological terminology SV and SH will be
adopted, to refer to § particle motion in the plane containing the propagation
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direction and the normal, and perpendicular to this plane, respectively. Section 2{z}
above is applicable to SH motion.
The potentials for P incidence are

@ = exp (fwfa)(x cos i + ysini — at) (Incident £)
+ A exp (iw/a)(—x cos i + ysini— at) (reflecied P), {13}
i = Bexp (iw/B)—xcosj+ ysinj— Bi) (reflected SV} (14}

where « = P velocity, B = S velocity, i = incidence angle, and j = SV refiection
angle. Figure 1 shows the relevant geometry for incident P energy.

Solution 1
From (5) and (11)
(iw cos i/a){l — A) exp(iw/o)(y sin i — at) = (iw sin j/B) B exp(in/B)(y sin j — Bz).

)

So sin i/« = sin j/B (Snell’s Law} {16}

and cos ifa (1 — A) = sin j/B B. {17y
From {7) and (12)

0 = @g/ex o) + @ex)
= — (w*cos i sin ifa®)(1 — A) expliw/o)(y sini — xf)
— (w? cos? jiB?) B expliw/B)(y sin j — Bo); (18
So (cos i sin ifa2)(1 — A) = —(cos? j/5?) B. {1

From (17) and (19), 4 = 1 and B = 0. This corresponds to a P reflection in phase
with the incident wave, and no SV reflection.

Solution 2

u, = 0 gives (sin i/x)(1 + A4) == (cos j/F) B, (205
tu,fox = O gives (cos? ifa?)(1 +- A) = — (cosj sin j/B*B. {21}
So A = —1 and B = 0. This implies a P reflection out of phase with the incident

wave, and no SV reflection.

Therefore addition of the two solutions will exactly cancel the refiections. The
case of incident SV waves is exactly parallel. It is a siraple matter to show that there
is no reflected P wave in either solution, and that the two reflected SV waves are of
opposite sign. Addition eliminates all reflections. As for the scalar wave equation,
the presence of a damping term does not affect the formulation.
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In both the solutions, mode conversion is suppressed, so in fact the reflections
are those for the vector wave equation. The same formulation therefore solves
both the elastic case and the vector wave equation, such as would be applicable to
acoustic waves in fluids, for example, or to electromagnetic wave propagation.

The two solutions can also be formulated in terms of image sources. P and SV
reflections at a free boundary cannot be treated by image techniques, because of the
mode conversion problem. The requirement that one displacement be zero,
however, suppresses the conversion and allows the use of images. The image
sources are of opposite sign in the two solutions, and they therefore disappear on
addition.

(¢) Body Waves in Three Dimensions

Since the SH component is uncoupled from the P and SV, it is still only necessary
to form two solutions for each face. They are as follows.

BounDARY VALUE PROBLEM 1. Set the normal displacement on the boundary
to zero.

BouNDARY VALUE PROBLEM 2. Set the two displacements in the plane of
the boundary to zero. The superposition of the two solutions will cancel all
reflections.

(d) Surface Waves

It is perhaps not obvious that reflections of surface waves are also eliminated by
this formulation. If Fig. 1 is now interpreted as a plan view of a three-dimensional
model, showing the free surface, it can be used to illustrate the surface wave case.
The wave encounters the boundary at an angle of incidence 7, and is reflected.

(i) Love waves. Particle motion is horizontal, and transverse to the direction of
propagation. At any particular depth, therefore, the elastic conditions to be satisfied
at a boundary are exactly those for SV reflection in two dimension, i.e., transverse
particle motion in the plane of the incident wave and the normal. As was indicated
in (b), the addition of the two solutions cancels the reflection.

(ii) Rayleigh waves. Particle motion is in the vertical plane containing the propa-
gation direction. At a free boundary there will be a reflected Rayleigh wave,
together with body waves whose generation is necessary to satisfy the stress
conditions at the boundary. Tt is beyond the scope of this paper to examine Rayleigh
wave reflections in detail. Rather, it will suffice to show that if only the reflected
Rayleigh wave is considered, reflections of opposite sign correspond to the Dirichlet
conditions for normal and parallel displacements, respectively.
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Potentials can be written as
@ = f(2){4 exp(iw/c)(x cos i + y sin i — ot}
+ A, exp(iw/c){(—x cos i+ ysin i — cr)}, {22}

Y. = g(z) sin I{B exp(iw/c)(x cos { + y sin i — ¢f)
+ B, expliw/c)(—x cos { + ysin i — cty}, )]

i, = g(z) cos i{ — B expliw/c){(x cos i -+ p sin [ — cf)

+ B, expliw/c(—x cos i + y sini — ¢7)], {243
J. =0, 123
where u = grad ¢ 4 curl &, {26Y

The functions f(z) and g(z), the phase velocity ¢, and the ratio B4 are given by
the conditions that ¢ and « satisfy the wave equation with veiocities afz) &"ld ﬁi" ),
respectively, and also that the stresses on the free surface are zero (see, e.g. [3D). The
components of displacement at the boundary are

) ¢ )
”a. — 6,‘(p + C{!}Z . 611115’
ax ;

\ iw COS 3 { .. \ e
= 5 w d —————f(z2)4 — Ay) + g'(z) cosi(B — Bl}% exp%w(y sini — ¢t} (T}

{

= VI YA 4 A+ G siniB 4 B exp L (psin — e, (28)

¢ . Oy _ o
z ™ ox cy

={f'(z)}(A4 + Ay — —g(z)(B B} exp_ {ysini — ct). {

eyl T

)

\

A positive reflection (4, = 4, B; = B) thus demands that i, = 0, and a vegative
reflection demands u, = u, = 0. It is a simpie matter to show that the stress
requirements, which degenerate to the Neumann conditions as before, are also
satisfied. It should be emphasized that this is not a complete proof for plane
Rayleigh wave incidence, but it does indicate that reflections of Rayleigh waves
might be expected to be canceled by exactly the same formulation as for body
waves.
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3. MULTIPLE REFLECTIONS

When more than one face of the model is required to be nonreflecting, more
solutions must be added to eliminate multiple reflections. Figure 2 illustrates the
case of a corner, with incident SV energy. In Fig. 2a the displacements normal to
the boundary have been held to zero at each face, and in Fig. 2b the displacements
paraliel to the boundary have been held to zero. The second order reflection is of
the same sign in both cases, so two further solutions (2¢ and 2d) must be added in
order to eliminate all reflections. The same group of four solutions is necessary for
P wave incidence, and for the scalar wave equation case the four solutions are the
combinations of the “fixed” and “free”” boundary conditions. In general, if reflec-
tions are required to be eliminated on # surfaces 2" solutions must be added. So
eight solutions would be necessary at a three-dimensional corner.

(@) Nx Dy (b} Ny Dx
Ny //ﬁ Nx
Dx Dy

/ /

(c) Nx Dy (d) Ny Dx
/ A Nx / Ny
/| by Dx

Y X ,

l v A

F1G. 2. The four solutions necessary for P or SV incidence at a corner. The particular case
shown is the S¥ wave, and the small transverse arrows indicate the polarity at each stage. “Dx”
implies the Dirichlet condition for the x component, “Ny”” the Neumann condition for the y
component, etc.

In practice it may not be necessary to add all the solutions to cancel the highest
order reflections. These arrive later, so it may be possible to obtain the required
information before they arrive. There are, in fact, high order reflections which
cannot be cancelled. They can occur when a ray path encounters the same face
more than once. An example is given later. These reflections are of such high order,
and their travel time so long, that they are of little practical importance.
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4. (3ENERATION OF SURFACE WAVES AT BOUNDARIES

When a2 body wave whose wavefront has large curvature encounters a free
surface, surface waves can be generated. This is undesirable when the boundary is
to be nonreflecting. The Rayleigh wave case is covered by the fact that none of the
solutions to be combined has a free boundary. Gne or other of the displacements
is always held to zero, and therefore Rayleigh waves can never propagate.

Love waves, however, can be generated by SH incidence, and one of the two
solutions to be considered is the “free boundary’ solution. Mo Love weves wiii
propagate for the second solution (“fixed boundary”) so there will be soms
residual when the sum is formed. Such waves wiil be noticeable only in the vicinity
of the boundary, so it is not vital that they be eliminated, though it is certainly
desirable. Their generation could be suppressed by ensuring that the model be
homogeneous near the boundary. Love waves do not propagate in a homogeneous
halfspace.

5. NuMrRICAL IMPLEMENTATION. A FINITE ELEMENT SCHEME IN TwO DIMENSIONS

Propagation problems are conveniently treated by a dynamic “finite element”
scheme employing the lumped mass matrix (see, .g. [4]). This requires the sclution
of a matrix differential equation

[Kiu + [Cla ~ [M]i = F, {3

4

where [K] is the stiffness matrix, [C] is a damping matrix, [5] is the diagonal mass
matrix, and F is a forcing function. The vector u contains the displacements at ail
the nodes of the mesh. A dot denotes differentiation with respect to time.
Eguation (3) is conveniently solved by a Runge-Kuita algorithm (e.g. [S]) wrich
requires that it be cast into the form

i = [M[*(F — [K]u — [Cl&). (31}

Since {M] is diagonal, the inverse is trivial to obtain. The Dirichlet condition may
be imposed by setting to zero the terms of [M~! that correspond to the particular
components of the boundary displacements that are {o be zero. If these displace-
ments are set to zero initially, they are forced to remain zero throughout the entirs
sClution. The stress condition is automatically satisfied by the finite element
formulation.

‘Figure 3 shows a model which demonstirates this technigue. It is simply an
assemblage of 576 square elements, and was excited at the upper left hand corner
by a square pulse. Four solutions were added to eliminate reflections on the right
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hand and lower faces. The displacements observed at the points marked in Fig. 3
are shown in the subsequent figures. The frequency characteristics of the model are
determined by the size of its elements. Wave lengths shorter than the clement length
will be severely attenuated, so the square input pulse becomes considerably
rounded. The finite element solution also contains a ringing phenomenon, at a
frequency characterisitic of the size of the elements. For display purposes the time
series of Figs. 4 and 5 have been low-pass filtered, and the ringing almost entirely
removed.

Impulse
here
/
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FiG. 3. The finite element model used to illustrate the technique. All elements are the same
size, but fine detail of the model has been only partly indicated. The points A to N are those at
which the displacements of Figs. 4 and 5 were observed. The ray path shown corresponds to one
high order reflection which is not cancelled. The model is 1 km square, P and S velocities are
5.5 km/sec and 3.3 km/sec, respectively, and there is no damping.

Figure 4 illustrates a solution of the scalar wave equation. No damping or
forcing terms (Egs. (30), (31)) were used; the excitation was applied as a dis-
placement pulse. The solution for free boundaries is shown in Fig. 4a, and in
Fig. 4b can be seen the mean of the four solutions. The only reflection occurring in
Fig. 4b, visible on traces D and I through N, corresponds to the ray path shown in
Fig. 3, and to the corresponding path nearly parallel to the x axis. This reflection is
not cancelled since it involves two encounters with a nonreflecting face, and so the
reflected wave always has a positive sign. In practice this causes little difficulty, as
models will in general be larger than that of Fig. 3, and this high order reflection
will be delayed until after the required solution has been obtained. Its presernce
does imply, however, that it is not feasible to excite a model with a time series of
very long duration. Rather, one should endeavor to obtain the impulse response,
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and then convolve with the desired input. If the model incorporates damping, the
high order reflections may be damped out completely, and this would of course
allow excitation by a long time series, without contamination from reflections.

| AU SN SNE SN VA AU SO0 MU DU SR SOV NN SV SIUUE S O S | [ IS SN S ST ST U T S I LY S

?
o0 0.2 04 08 4ime 0.8 1.0 fels) 3.2 04 - 08 “ime 0.8 0

Fic. 4. Observed displacements for the scalar wave equation, i.e., S motion in two dimen-
sions. In Fig. 4a no effort has been made to cancel reflections. Fig. 4b represenis the sum of the
~

four solutions necessary to eliminate reflections on the lower and right hand faces of the model
Time is in seconds.
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FiGg. 5. The P-SV case, showing the x and y componenis of motion at each point, Four solu-
tions have been added, as in Fig. 2. Theoretical arrival times for P (solid line) and .S (broken line}
are shown, and also for the reflection corresponding to the ray path of Fig. 3 {dotted iinc}.
The large displacements following the § wave on the free surface are those of the Rayieigh
wave.
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Figure 5 shows the mean of the four solutions for the dilatational case. The
square exciting pulse was applied in the negative y direction, and the x displace-
ments along the left-hand face of the model were held to zero to prevent Rayleigh
waves propagating down that face. The Rayleigh pulse can be seen clearly in traces
A-D, as the large displacements following the S pulse. No reflected Rayleigh wave
returns from D. Calculated arrival times as shown in the figure identify the P and §
pulses and the third order reflections of Fig. 3, from the right hand and bottom
faces of the model. The latter reflections are visible mainly on the y components of
displacement, and are stronger because P wave radiation is strongest in the y
direction. Reflections from the right-hand face are detectable on the x component.
The arrows in the figure indicate the appropriate component where the reflection
may be seen. There are also some subsequent reflections which cannot be
eliminated, but an increase in the size of the model will delay their arrival. It should
be appreciated that doubling the size of the model delays by a factor of eight the
time of first detection of unwanted reflections.

This finite element formulation is of course only one way of implementing the
proposed technique. There are others, some possibly more efficient, but it serves
to demonstrate the rather dramatic elimination of reflections. There is no difficulty
in incorporating the scheme into “finite difference” calculations.

6. OBLIQUE AND CURVED BOUNDARIES

Thus far only plane boundaries, parallel to one of the coordinate axes, have been
treated. It would be convenient if the formulation could be extended to plane
boundaries inclined to the axes, and to curved boundaries. For inclined plane
boundaries, it is necessary to express the displacement at the boundary in terms of
components normal and parallel to the boundary face, rather than parallel to the
coordinate axes. This can be accomplished for finite element formulations by a
simple transformation matrix, and no doubt can also be implemented for finite
difference schemes. The problem of curved boundaries presents a further difficulty,
namely that if the boundary is concave to the incident wavefront, multiple reflec-
tions can occur. It therefore seems advisable to use plane boundaries, unless there
are compelling reasons to introduce curvature.

7. CONCLUSIONS
Reflections may be eliminated in wave propagation problems by superimposing

solutions which satisfy the Dirichlet and Neumann boundary conditions, respec-
tively. In cases where there is more than one component of displacement, these
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conditions are applied to alternate components at the boundary. If n boundary
faces are required to be nonreflecting, 27 solutions will be necessary for a fuil
solution, although it is rarely necessary to compute all these. Certain refiections
involving muitiple encounters with the same boundary face of a model cannot be
eliminated. but this has only limited effect since they may be delayed by increasing
the size of the model, or removed completely by incorporating damping. The
technigue is easily implemented for finite element or finite difference schemes and
is applicable when particle motion is governed by the scalar or vector wave
equation, or in the more general elastic case, including surface waves. The presence
of damping terms does not alter the formulation.
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